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Abstract. We study theoretically the effects of exciton bound states on the reflectivity of
semiconductor superlattices and thin films. We consider direct gap semiconductors and assume
extrinsic potentials near surfaces to model the exciton interactions. Using a multistep method
and the 4×4 transfer matrix approach, we solve analytically the polariton exciton equations for
s-polarized light. Results are presented for theAn=1 excitonic transition of CdS and interpreted
in terms of exciton bound states and Fabry–Pérot resonances of the transverse modes. We
find that for the superlattice the reflectivity peaks of the high-energy bound states are notably
enhanced as compared with the corresponding ones of the single isolated film.

1. Introduction

Optical properties of direct gap semiconductors, in the spectral region of excitonic
transitions, have attracted the attention of recent publications [1–6]. The reflectivity of
light is drastically modified by the presence of impurities near surfaces, in the so-called
transition layer, due to the interaction of the excitons with the induced surface potential [6].
If no impurities are present in the semiconductor, the excitons are repelled into the bulk by
the surface image potential [7, 8] and the non-escape condition [8, 9]. The presence of charge
near the surface gives rise to extrinsic potentials that may attract or repel the excitons [1–6].
In addition, absorption processes may take place in the transition layer [1]. Consequently,
close to the surface, polariton excitons may exhibit different behaviour compared to those
in the bulk of the material [10]. Several theoretical models for semiconductor surfaces
have been proposed since the primitive model of the ‘dead layer’ of excitons [7]. The
‘dead’ or ‘inert’ layer model assumes that an infinite abrupt potential is formed near the
surface that repels the excitons. Besides this model, a linear continuous potential [11]
has also been considered. However, the most realistic repulsive potential is the one with
exponential variation [8, 12–14]. Using this exponential potential, studies have been made
on the optical response of semiconductor surfaces and thin films [15], with satisfactory
results for the reflectivity of semiconductor crystals [8]. It is worth noting that during
the growth process, impurity atoms may be present to modify the properties of surfaces.
For instance, band bending may be produced due to the presence of internal electric fields
[16]. Recent publications have been devoted to studying optical properties of surfaces and
films of semiconductors taking into account surface potentials with an attractive as well as a
repulsive part [1–6]. The potential well formed in this way produces bound states of excitons
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which manifest themselves as broad peaks in the reflectivity spectra [17, 18]. Experimental
observations on the effects of bound states on the optical response of semiconductor surfaces
have been reported [17, 19–21].

In this report we present a multistep procedure [22] and the 4×4 transfer matrix approach
to study the effects of exciton bound states on the optical response of semiconductor thin
films and superlattices for s-polarized light. To see how the multistep approach works,
we compared with previous results of semiconductor surfaces and films. We achieve good
results when choosing steps of widthsd 61 Å. The report is presented as follows. In
section 2 we explain the multistep method and develop the transfer matrix theory and in
section 3 we discuss the numerical results and make conclusions.

2. Theory

Let us consider the superlattice constructed with layers and semiconductors and insulators:
the interfaces are parallel to thexy-plane and the growth direction is along thez-axis. For
the semiinfinite system we set the origin at the surface of the truncated superlattice. In the
semiconductor layer we will consider different forms of the surface potentials. To construct
the transfer matrix, we focus our attention on a single semiconductor layer of thicknessds
and apply a multistep approach. A schematic diagram is shown in figure 1.

Figure 1. A schematic representation of the multistep method. The figure shows a typical
Morse potential used for the calculations, with the steps and widths indicated.

To describe the polariton exciton, we deal with the equation of the excitonic polarization
P , which is obtained from the equation of motion of the exciton centre of mass and Maxwell
equations. For s polarization we writeP = (0, P (z)eiqxx−iωt , 0) and the differential equation
as [6][
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where

02(z) = M

h̄ωT

[
ω2− ω2

T (z)−
h̄ωT

M
q2
x + iων(z)

]
(2)

ν(z) = ν + h(z) h(z) = h0 e(−z/a) ωT (z) = ωT + 2U(z). (3)

In these equations,qx is thex-component of the wave vector,ω is the angular frequency,c
is the speed of light in vacuum, ¯hωT is the energy of the excitonic transition,M is the mass
of the exciton,ωp is a measure of the oscillator strength,ε0 is the dielectric constant of
the background andν is the damping parameter. The extrinsic surface potentialsU(z) that
are studied in this report are the truncated Morse potential and the exponentially repulsive
potential. Defining|Um| as the minimum value ofU(z) and zm as the position of that
mimimum, one can write, for the Morse potential,U(z) as

U(z) = Um|[e−2(z−zm)/a − 2 e−(z−zm)/a] 0 < z < ds. (4)

To solve equation (1) rigorously, a series expansion may be used to take into account the
dependence ofz on 02. An alternative procedure [22] consists in dividing the continuous
potential in steps of constant potential, which in turn yields02 constant and allows the
solution to be written as a superposition of exponentials in each step (see figure 1). The
procedure is to construct the transfer matrix for a single step and then use boundary
conditions to obtain the matrix for a layer. On the basis of this multistep method, for
a step of widthdi (=zi+1−zi) in the film,P(z) is written in terms of the linear independent
solutions e±iqnz, with n = 1, 2 andzi 6 z 6 zi+1. The solution forqn (with Im qn > 0) is
given as

q2
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where z̄i = (zi + zi+1)/2. Notice that the roots are determined by taking into account the
potentialU(z), which enters in

02(z̄i) = [ω2− ω2
T (z̄i)−Dq2

x + iων − βU(z̄i)]/D β = 2ωT
h̄

D = h̄ωT
M

. (6)

Since there are four propagating modes in each step, we consider four independent fields
to construct the transfer matrix, namely, the tangential components of the electric field,Ey ,
and magnetic field,Hx , the excitonic polarizationP and its derivativeP ′. Each field is
expressed in terms of the amplitudesE± of the modes travelling to the right (+) and to the
left (−). We write

Ey(z) =
2∑
n=1

(E+n eiqnz + E−n e−iqnz) Hx(z) = i
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where

F =
[
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]
P =
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]
(11)

and
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 (12)

with Yn = 1/Zn. Writing[
A1

A2

]
z

= T (z − z′)
[
A1

A2

]
z′

(13)

whereT (z) = diag(eiq1z, e−iq1z, eiq2z, e−iq2z) and diag(. . .) is a diagonal matrix constructor,
we find that the fields at the right boundaryzR are related to the fields at the left boundary
zL (zR = zL + di) by[

F
P

]
zR

= M
[
F
P

]
zL

(14)

whereM = GT (d)G−1 is a 4× 4 matrix, with the elements having the form

M11 = [X2C1−X1C2]/1 M12 = i[−X2S1/Y1+X1S2/Y2]/1

M13 = [C2− C1]/1 M14 = [S2/q2− S1/q1]/1

M21 = i[−Y1X2S1+ Y2X1S2]/1 M22 = [X2C1−X1C2]/1

M23 = i[Y1S1− Y2S2]/1 M24 = [C2/ω − C1/ω]/1

M31 = X1X2[C1− C2]/1 M32 = iX1X2[−S1/Y1+ S2/Y2]/1

M33 = [X2C2−X1C1]/1 M34 = [−X1S1/q1+X2S2/q2]/1

M41 = X1X2[−q1S1+ q2S2]/1 M42 = −iωX1X2[C1− C2]/1

M43 = [q1X1S1− q2X2S2]/1 M44 = [−X1C1+X2C2]/1

whereSi = sin(qid), C1 = cos(qid), i = 1, 2 and1 = X2−X1.
The transfer matrixM is for theith step, so we now involve the multistep procedure to

obtain the total matrix of the semiconductor layer. We recall the fact that for each step in a
layer there are four transverse modes, with two of them being additional propagating modes;
furthermore, to achieve our goal, we shall use the following additional boundary conditions
(ABCs) P(z+i ) = P(z−i ) andP ′(z+i ) = P ′(z−i ) together with Maxwell boundary conditions
at the interface between theith step and the (i+1)th step to construct the matrix. The final
result can be written in terms of a product of matrices asMS = MnMn−1Mn−2 . . .M1.

After obtaining the matrix of a layer of thicknessds , we invoke the ABCs at the free
surfaces of the layer to reduce the 4× 4 matrix to a 2× 2, to be able to connect the
fields with those of the insulating layer. The ABCs used for this purpose are written as [6]
[αP +∂nP ]s = 0. In this equation,α is a parameter and∂n is an outward normal derivative.
When this ABC is applied, one can write [23]

F (zRs ) = NsF (zLs ) (15)

whereNs is now a 2×2 matrix, andzRs andzLs stand for the right and left boundaries of the
layer. Applying Maxwell boundary conditions at the semiconductor layer–insulator layer
interface, we obtain

F (zRI ) = MtF (z
L
s ). (16)
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HereMt = MINs is the total transfer matrix of a superlattice periodd = ds + dI andMI

is the 2× 2 matrix of the insulator

MI =
(

cos(qI dI ) −iYI sin(qI dI )
−iZI sin(qI dI ) cos(qI dI )

)
(17)

whereZI = qI /ω andYI = 1/ZI .
For a superlattice with periodd, we invoke Bloch’s theorem to write

F (z + d) = eipdF (z) (18)

with p being the one-dimensional Bloch wave vector. Combining these last two results, we
may find the equation cos(pd) = Tr(Mt)/2 to determinep, where Tr denotes the trace of
the matrix.

For the s-polarized light incident on the multifilm system, the reflectivityRs in the
surface impedance method is

Rs =
∣∣∣∣ErEi

∣∣∣∣2 = ∣∣∣∣Zs(0)qz + q0

Zs(0)qz − q0

∣∣∣∣2 (19)

where the surface impedance [24] is given byZs(0) = Ey(0)/Hx(0). For the problem at
hand

Zs(0) = − M12

M11− eipd
= −M22− eipd

M21
. (20)

3. Results and discussion

Numerical calculations are presented for superlattices of alternating layers of a
semiconductor and an insulator, and an isolated semiconductor film. Our main purpose
is to study the exciton bound states produced by attractive Morse potentials near surfaces,
so for simplicity we consider vacuum as the insulator. To make the system precise, we
consider theAn=1 excitonic transition of CdS and study the optical response for s-polarized
light. For this material, ¯hωT = 2.552 72 eV,h̄ωL = 2.554 58 eV,M = 0.94 m0, where
m0 is the rest mass of the electron. The parameterα appearing in the additional boundary
condition (ABC) equations is taken to be large(→∞), so we only consider the Pekar ABC.
The reason for this choice is that this ABC has been proved to give the best results when
compared with experimental data [6].

In figure 2 we show the reflectivityRs of light for a superlattice (curve a), an isolated
film (curve b) and a single semiconductor surface (curve c). The energy eigenvalues
h̄ω1 = 2.5499 eV and ¯hω2 = 2.552 37 eV of the exciton bound states are taken from
the literature as calculated for a single film [1]. Curves a and b exhibit similar structures
belowωT , where the shoulders are consequences of the bound states but shifted with respect
to h̄ω1 andh̄ω2. Notice that the high-energy bound state shoulder is notably enhanced for the
superlattice as compared with the corresponding one of the single isolated film. Moreover,
we see that these two peaks are red shifted respect to those of the single surface. The fact
that these two shoulders correspond to the bound states in the Morse potential has been
already discussed in the literature for surfaces and thin films [1]. It has also been discussed
that the maxima associated to bound states are shifted relative to the energy eigenvalues due
to the interaction between the mechanical localized excitons and the electromagnetic fields
in the medium (polaritonic effects). The additional structure of curves a and b is interpreted
as Fabry–Ṕerot resonances of the transverse modes propagating in the semiconductor film.
The resonances for the superlattice are notable enhanced when compared withRs of the
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Figure 2. s-polarized light reflectivityRs for a superlattice (a), a film (b) and a surface (c).
Parameters correspond to theAn=1 excitonic transition of CdS withUm = −5 meV,zm = 60 Å,
h̄0 = 2 meV. The energies of the mechanical exciton bound states are indicated, as calculated
for the single semiconductor film. ¯hω1 = 2.5499 eV and ¯hω2 = 2.552 37 eV.ωT andωL are
indicated, and normal incidence of light is considered,θ = 0◦. The effective thickness of the
semiconductor film isds = 620 Å. The same value ofds is used for the superlattice with an air
gap ofdI = 480 Å.

Figure 3. Real part of the dispersion relationω againstpd of the superlattice collective normal
modes for three potentials. Curve a is forUm = −5 meV, curve b is forUm = −4 meV and
curve c is forUm = −3 meV. zm = 60 Å, θ = 0◦. The semiconductor layer has a thickness of
ds = 620 Å and the air gap ofdI = 480 Å.

single layer, as in the case of p-polarized light [23]. To test the multistep method, we
have carried out comparisons ofRs with curves for single surfaces as well as for thin
films, already reported in the literature [1], finding that the method works quite well when
choosing widths of the step satisfying the conditionsdi 6 1 Å.
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Figure 4. Imaginary part of the dispersion relationω againstpd of the collective normal modes
for the same parameters as figure 3.

Figure 5. Reflectivity Rs of the semi-infinite superlattice for the same parameters as the
dispersion relations shown in figures 3 and 4. Energies of the bound states are indicated for
Um = −5 meV, h̄ω1 = 2.5499 eV and ¯hω2 = 2.552 37 eV.

In figures 3 and 4, we depict the dispersion relation of the collective normal modes
for the superlatticeω against Re(pd) andω against Im(pd), respectively, as functions of
the minima of the potential well. Values ofUm are 5 for curve a, 4 for curve b and 3 for
curve c. The structure of the exciton bound states is for energies belowωT and is shown
as maxima of the real part of Bloch’s wave vectorp, in the first Brillouin zone, and of
Fabry–Ṕerot resonances in the layers above this energy. We notice that as the potential
well becomes deeper the bound state energies as well as the resonances are red shifted.
The imaginary parts of the dispersion relations presented in figure 4 show that the largest
magnitude of Im(p) is for energies near the bound states whenUm takes the smallest value
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Figure 6. Reflectivity, transmissivity and absorptivity for a single isolated semiconductor film
for a Morse potential andUm = −5 meV and normal incidence of light. Bound state energies
ω1 andω2 are indicated. The film thickness isds = 620 Å.

and this magnitude decreases asUm increases. The structure presented by the dispersion
relations is manifested in the reflectivity curves as shown in figure 5, that is, whenever the
real part ofp presents a maximum, a maximum ofRs is also obtained. Moreover, the
bound states shoulders are well defined and also red shifted as the potential well becomes
deeper. Values of ¯hω1 andh̄ω2 are forUm = −5 meV.

To complement the discussion on the exciton bound states, we display results for a single
isolated semiconductor film. In figure 6, the reflectivity, transmissivity and absorptivity are
presented for a film with effective thickness of 620Å. The exciton bound states are located
in the vicinity, but belowωT and are manifested as shoulders ofRs . All other dips present
in the curves are Fabry–Pérot resonances. In correspondence to the dips of the resonances,
the transmissivity exhibits peaks and the absorption coefficient also displays structure.

In figure 7 are displayed the effects of different choices of surface potentials on the
reflectivity for the same semiconductor film. We consider that the incident light shines on
the left surface of the film with an angle of incidence ofθ = 0◦. Curve a is obtained with
the Morse potential on the left surface and a pure repulsive potential on the right surface.
The structure due to the two exciton bound states in the attractive potential well is clearly
manifested as peaks, with a small blue shift induced by the imaginary part of the potential
and polaritonic effects. Curve b accounts for pure repulsive potentials and only resonances
are needed to explain the structure. The absence of any surface potential is considered
in curve c where the structure is due to only Fabry–Pérot resonances. In this last case,
the effective thickness is larger compared to the other two cases presented in the figure;
furthermore, more resonances are allowed.

In conclusion, we have presented a study of excitons and exciton bound states in
attractive surface potentials using a transfer matrix formalism and the multistep approach.
We have considered superlatttices and isolated films of semiconductors to calculate the
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Figure 7. Reflectivity of a single film for different surface potentials. Curve a considers a
Morse potential on the left surface withUm = −5 meV and a repulsive potential on the right
surface whereh0 = 2 meV. Curve b accounts for repulsive potentials on both surfaces, with a
height ofh0 = 2 meV. In curve c no surface potential is included.ω1 andω2 indicate the bound
states in the Morse potentials withUm = −5 meV. Normal incidence of light is considered.

optical response for s-polarized light. A comparison with the reflectivity of a single
semiconductor surface obtained by solving the differential equations shows that the multistep
method works quite well. The exciton bound states are clearly better manifested in both
isolated films and superlattices, with an enhancement ofRs for the superlattice. From these
results, we anticipate that exciton bound states are favoured to be observed experimentally.
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